2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。
一、夏普莱斯:两次获得诺贝尔化学奖
2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。
今年,他第二次获奖的「点击化学」,同样与药物合成有关。
1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。
过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。
虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。
虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。
有机催化是一个复杂的过程,涉及到诸多的步骤。
任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。
不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。
为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。
点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。
点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。
夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。
大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。
大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。
大自然的一些催化过程,人类几乎是不可能完成的。
一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。
夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?
大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。
在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。
其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。
诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:
夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。
他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。
「点击化学」的工作,建立在严格的实验标准上:
反应必须是模块化,应用范围广泛
具有非常高的产量
仅生成无害的副产品
反应有很强的立体选择性
反应条件简单(理想情况下,应该对氧气和水不敏感)
原料和试剂易于获得
不使用溶剂或在良性溶剂中进行(最好是水),且容易移除
可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定
反应需高热力学驱动力(>84kJ/mol)
符合原子经济
夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。
他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。
二、梅尔达尔:筛选可用药物
夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。
他就是莫滕·梅尔达尔。
梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。
为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。
他日积月累地不断筛选,意图筛选出可用的药物。
在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。
三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。
2002年,梅尔达尔发表了相关论文。
夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。
三、贝尔托齐西:把点击化学运用在人体内
不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。
虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。
诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。
她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。
这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。
卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。
20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。
然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。
当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。
后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。
由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。
经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。
巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。
虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。
就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。
她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。
大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。
2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。
贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。
在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。
目前该药物正在晚期癌症病人身上进行临床试验。
不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。
「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)
参考
https://www.nobelprize.org/prizes/chemistry/2001/press-release/
Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.
Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.
Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.
https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf
https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf
Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.
“靠山吃山”变为“养山护山”******
彩霞映照下的江西省萍乡市湘东区腊市镇益塘水库,水清岸绿、鱼翔浅底,库边曲桥亭榭、鹭鸟翩飞,令人心旷神怡。很难想象,曾经的这里是矿渣沉积、水体发黑发臭的另一番景象。益塘水库的“新生”,正是湘东区大力开展废弃矿山生态修复治理的一个缩影。
近年来,湘东区通过对废弃矿山实施生态修复综合治理,不仅改善了废弃矿区的生态环境,还走出了一条经济社会发展和生态文明建设相辅相成、相得益彰的新路。
湘东区是远近闻名的“煤城”,由于过去生产工艺落后和盗采乱挖,留下了近9万亩的废弃矿山,一座座满目疮痍的废弃矿山如同一块块难看的疤痕散布在青山之间。水土流失、环境恶化等生态问题严重影响群众生产生活、城乡环境面貌。
“湘东区冬瓜槽区域,高峰期有小窑煤井100多家,造成采掘区域基岩裸露,煤矸石堆积成山,植被严重破坏,地表破坏总面积约为4095亩。”湘东区相关负责人介绍说。湘东冬瓜槽废旧矿山生态修复项目是全市最大的废旧矿山生态修复项目,治理区域范围包括湘东镇巨源村、腊市镇明塘村、乌岗村、下埠镇虎山村。
“深挖废旧矿山资源自身价值转化潜力,推出‘1+N’模式,实现项目投资回报,以减轻政府投资压力。”湘东区相关负责人说。
位于腊市镇乌岗村的益塘水库2022年4月开始治理,建设者从边坡治理、清挖矿渣淤泥着手,新建了挡土墙、铺设草皮、栽植护岸树木,对库底污染沉积物及泥沙进行彻底清理,清理出3万立方米沉积物,还原了集灌溉、防洪、观光等于一体的民生水利工程原貌。
“相比往年,水库的蓄水量得到了扩容,水库的水体也由劣五类变成三类水。”乌岗村村干部说,时隔多年,这个小二型水库重新发挥作用,保障了下游数百亩农田灌溉。
经过综合整治,如今的乌岗村,植被葱郁、蜂飞蝶舞、水塘清澈,一条条新修的沥青公路蜿蜒山间,一派生机盎然,一个个特色产业基地彰显出活力和魅力。
如果把冬瓜槽废弃矿山生态修复综合治理项目看成是湘东区生态绿城的“集大成者”,那么,该项目中的“H39号地”则可称为当地生态修复建设“小试牛刀”的一块试验田。
从山顶俯视,面积不到1亩的“H39号地”仿佛是茫茫戈壁中的一抹绿点缀其间,红薯、萝卜、豇豆等作物郁郁葱葱。“绿色无公害农产品,简直身处花果山。”微信朋友圈里,项目经理兼施工员王志伟经常晒晒自己的成果。
在花冲坡片区,工人们正在边坡打锚杆挂网,他们架着长长的管子,对护坡进行喷播,伴有草籽肥料和灌木苗种的泥浆源源不断喷射到边坡上。
“边坡增厚10厘米,泥浆里草籽和灌木长大后抓地强,稳定性很好。”项目总工程师胡取枋介绍,高峰时,冬瓜槽项目有60台挖机、100多辆后八轮、8台推土机、8台铲车和6辆洒水车同时作业。
“矿山修复,不能一‘绿’了之,关键在激活沉睡资源,让村民口袋鼓起来。”胡取枋介绍,通过降坡、削坡、修建挡土墙、覆土复绿等措施,消除地质灾害隐患,将为当地百姓提供旱地和水田100多块,通过土壤配方改良,农民可种上经济作物和农作物,也可以发展休闲农业。整个项目预计可新增耕地面积1720亩,其中水田494亩,旱地1226亩。
对废弃矿山进行生态修复,就是实现对土地资源的再次利用。湘东冬瓜槽废旧矿山生态修复项目,建设总规模3845亩,预算总投资3.1827亿元。此举不仅为政府决策提供依据,保障国有资产不会流失,还解决了政府投资回报难题,有效推进废旧矿山生态修复治理进程;以政府平台公司为融资主体,对生态修复项目进行包装,向政策性银行进行融资,不增加政府的隐性债务。
修复矿区、植草种瓜、种花生芝麻、养山鸡;开发旅游、培育产业……从靠山吃山到养山护山,从地下开采到地面开花,百年煤矿抖落灰尘,正在乡村振兴绿色发展的康庄大道上接续奋斗,一幅幅彰显产业兴旺之美、文明淳朴之美、共建共享之美、自然生态之美、和谐有序之美的锦绣画卷,正在湘东大地徐徐展开。(张宜婷)
(文图:赵筱尘 巫邓炎)